
Kubebench:
A Benchmarking Platform for ML Workloads

Xinyuan Huang†, Amit Kumar Saha†, Debojyoti Dutta†, Ce Gao∗‡
†Cisco Systems, ∗Caicloud, ‡Shanghai Jiao Tong University

Abstract—Machine Learning (ML) workloads are becoming
mainstream in the enterprise but the plethora of choices around
ML toolkits and multi-cloud infrastructure make it difficult to
compare their performance and costs. In this paper, we motivate
the need for benchmarking ML systems in a consistent way,
discuss the requirements of an ML benchmarking platform, and
propose a design that satisfies the requirements. We present
Kubebench, an example open-source implementation of an ML
benchmarking platform based on Kubeflow, itself an open-source
project for managing any ML stack on Kubernetes, a widely used
container management platform.

Index Terms—machine-learning; benchmarking; kubebench;
kubeflow; kubernetes

I. INTRODUCTION

Machine Learning (ML) systems are of strategic importance

for many enterprises and is increasingly influencing business

decisions. The field is progressing fast and new improvements

are being frequently published (peer-reviewed or otherwise),

almost weekly. Recent famous results, more often than not, are

based on extremely large data sets and use up a lot of computa-

tional power in the form of CPUs, GPUs, and TPUs [1]. What

is usually not obvious is the systems engineering issues that are

required to make such ML systems work reliably and at scale,

and in a multi-cloud world that enterprises have to deal with.

Even though the ML algorithms are mostly public and often

have open source implementations with active community

engagement, the real hurdle in democratizing machine learning

and putting it to production are the engineering issues in

reliably scaling any ML solution, during both the training and

the inference stages. Also in a multi-cloud environment, one

needs to manage public cloud costs and operational costs for

on-premises infrastructure.

The open-source Kubeflow [2] project is one of the first

serious open-source attempts to democratize ML on con-

tainer platforms, and “is dedicated to making deployments
of machine learning (ML) workflows on Kubernetes simple,
portable and scalable.” Just as the Kubernetes [3] project has

become a popular choice for deploying, scaling, and managing

containerized applications, Kubeflow is an attempt to reducing

the barrier to entry in deploying, scaling, and managing ML

solutions.

Kubeflow is simply a ML lifecycle manager that helps run

workflows on any Kubernetes cluster. This decouples the re-

sponsibilities of a data scientist and a ML devsecops engineer.

It enables the ML community to focus on just the ML models

and algorithms while delegating the actual deployment, life-

cycle management, and scalability of the end application to

the Kubernetes ecosystem comprising of Kuberetes, Kubeflow,

and service meshes like Istio [4]. Thus, the data scientist is

left free to develop models in the framework of his/her choice,

move it to Kubeflow and automatically be able to run the

application on on-premise infrastructure, and then, by simply

pointing to a Kubernetes cluster that is running on the cloud

(say, Amazon’s ECS [5] or Google’s GKE [6]), can get the

application to run with the scale and reliability of a production-

grade, cloud-based Kubernetes cluster. Kubeflow started with

the support of only TensorFlow [7] jobs but has already started

supporting PyTorch [8] jobs.

Enterprise are confronted with an array of complex choices

to make in order to put ML in production. For example, these

decisions have to make sense in the multi-cloud world we live

in. Some of the following choices are around performance and

cost optimization that each enterprise has to make for their

specific use cases:

• There are several popular ML toolkits such as Tensor-

Flow [7], PyTorch [8], and Caffe [9]. Without trying out

all of these, it is impossible to say which toolkit will

perform the best for any specific use case.

• It is impossible to know how an ML stack will perform

for a given ML workload if the underlying infrastructure

platform specifications were to be changed. For example,

adding more machines (or containers or VMs) might

actually make the overall system slower, as shown by

Zhang et al. [10].

The contributions of this paper are two fold. First, the

paper enumerates the design requirements of benchmarking

platforms and infrastructure, to address the above mentioned

issues and second, the paper presents the design of Kubebench

that satisfies the design requirements. Kubebench is an open-

source ML benchmarking platform based on Kubeflow. To the

best of our knowledge, this is the first paper that addresses

the above problems. This paper focuses on the ML infra as

opposed to defining ML workloads, which is beyond the scope

of this paper.

The rest of this paper is organized as follows. We explain

the benchmarking requirements in Section II, following which

Section III has the design details of the Kubebench bench-

marking platform. We present related work in Section IV and

finally we conclude in Section V.

II. BENCHMARKING REQUIREMENTS

The requirements presented here are generic and indepen-

dent of the Kubeflow project. Though the design proposal

73

2018 First International Conference on Artificial Intelligence for Industries

978-1-5386-9209-7/18/$31.00 ©2018 IEEE
DOI 10.1109/ai4i.2018.00025



Fig. 1. Schematic of the suggested benchmarking platform.

presented next in Section III is based on Kubeflow, other

implementations satisfying these requirements are very much

possible. The following should be the high level requirements

for a benchmarking platform, in no particular order (Fig. 1

shows a high level schematic):

• Support for multiple ML frameworks. Since there are

multiple popular ML frameworks, such as TensorFlow [7]

and PyTorch [8], a benchmarking platform must support

multiple frameworks. This ensures that the platform can

be used without any vendor lock-in. Implicit in this

requirement is the additional requirement that the bench-

marking platform should easily be able to support future

ML frameworks.

• Portable. One of the most important requirements for

a benchmarking platform is the ability to easily move

from one environment to another. For ML applications,

it is quite common that the ML expert runs experiments

on models on his/her own laptop to get some prelimi-

nary performance numbers, then moves to an on-premise

infrastructure to test a larger version (on a larger data

set), and finally, when satisfied with the performance of

the model, moves to a production-grade cloud to test

a scaled out version. Of course, each of these setups

can have a mix of different computation elements such

as, CPUs, GPUs, and TPUs. The benchmarking platform

should allow seamless movement from one infrastructure

to another, possibly by changing some human readable

configuration and without having to change anything in

the underlying ML training/serving job. However, if the

production grade, cloud-scale system needs distributed

training whereas the smaller scale, laptop or on-premise

versions, uses a single training job, then there would have

to be some changes made.

• Extreme scalability. Since realistic ML applications usu-

ally run with very large data sets, the model training

is also done in a scaled out distributed system. Conse-

quently, the benchmarking platform should be able to run

at production-scale, thus allowing quantitative evaluation

and comparison of realistic deployment scenarios.

• Flexible and extensible API. The performance of a dis-

tributed ML job is affected by many factors including,

model parameters, distribution scale, scheduling policy,

accelerator settings, network configurations, etc. The

benchmark platform must have a flexible API so that the

user can easily specify variables of interest corresponding

to each specific benchmark case. It is also important to

have the API extensible so that new kinds of model

parameters and system configurations can be added on

the fly as the requirement grows with new benchmark

scenarios.

• Based on open-source. Last, but certainly not the least,

the benchmarking platform should be open-source so that

it can be used by everyone without any financial liability.

This paper will not argue for the advantages of open-

source software but the fact that open-source software,

among other things, is customizable and flexible, avoids
vendor lock-in, and probably most importantly, can be
audited, should be reason enough.

In addition to the above mentioned requirements, it is also

important to identify non-goals so that the benchmarking

platform does not get overloaded with non-essential features.

The platform by itself should not be involved with making

the results persistent or to provide any sort of graphical user

interface for running, monitoring, or reporting and visualizing

results. These features, albeit useful, should be done via a

separate software entity. The primary goal of the benchmark-
ing platform is to allow the users to run ML workloads
using different ML frameworks and on different infrastructure.

Additional community efforts similar to TPC [11] benchmarks

would be needed to consolidate and publish benchmark results

from multiple vendors. Already such efforts are underway in

the form of MLPerf [12] and understandably it is emulating

the TPC process wherever possible.

III. DESIGN OF KUBEBENCH

In this section we describe the design of Kubebench, a

benchmarking platform based on Kubeflow that runs bench-

mark jobs on Kubernetes. As already mentioned, this is an

example implementation and other implementations satisfying

the requirements specified in Section II are very much possi-

ble.

A. Workflow Design

Kubebench defines a workflow that leverages Kubeflow

to deploy ML workloads and implements a set of steps to

augment the ML workloads with configuration and result

processing functionalities. In this paper, we consider two

kinds of jobs in this process. Namely, Kubebench job and

Kubeflow job, where a Kubebench job defines the workflow of
a benchmark task, while a Kubeflow job defines the workloads
of the benchmark. The major steps in running a Kubebench

job, shown in Fig. 2, are as follows:

1) Configuration. The first step is to setup a benchmark

job configuration. This configuration contains various

settings, including system settings such as cluster sizes,

workload images, accelerator configurations, etc. and

model parameters such as model type and batch size.

The configuration consists of two parts: a template1 that

1In Kubernetes, such templates are typically packaged in Ksonnet Packages
or Helm Charts.

74



Fig. 2. Workflow of the Kubebench benchmarking platform running on Google Kubernetes Engine (GKE). The configuration and the results can be either
stored in a database (DB) or PVC, which stands for Persistent Volume Claim, a standard way for requesting and claiming a persistent resource in GKE.

defines the overall job specifications with configurable

variables, and a set of parameters that specify variable

values. The configuration is parsed to produce a job

manifest2 that defines a Kubeflow job. Since Kubeflow

runs on an underlying Kubernetes cluster, this step is

implemented in a pod3.

2) Run Kubeflow Job. In this step, Kubeflow runs the job

produced in the previous step. A runner pod reads the job

manifest and launches Kubeflow job pods based on the

system settings and model parameters specified in the

manifest. At the same time, a monitor pod keeps track of

the job status. The container images and corresponding

source codes used to run the job can be derived from

pre-existing benchmark tools. Kubebench is oblivious to

the underlying implementation of these images.

3) Compile Outputs. Once the benchmark job completes,

a post-processor parses the logs and output from the

completed jobs to produce a result report. This report,

along with other useful information (e.g. aggregated

logs, etc.), are persisted in a result storage.

4) Report Results. A reporter pod reads in the report

information of the single benchmark experiment, and

merges it with the aggregated report of all experiments

2A Kubernetes manifest defines the specifications of Kubernetes resources.
3A Kubernetes pod is a group of containers that are deployed together on

the same host. In several practical scenarios single containers are used and so
“pod” and “container” are sometimes changed interchangeably.

in a user-specified external storage.

5) Clean Up. Finally, all the job resources created in the

previous steps are deleted so that the system is left in the

same state that it was before the benchmark workflow

started.

B. API Design

The Kubebench configuration consists of two tiers of pa-

rameters. The first tier parameters control the behavior of

the Kubebench workflow, where container images and cor-

responding arguments are specified for the Configurator, Post-

Processor, and Reporter pods (shown in Fig. 2 and described in

Section III-A). Other parameters, such as persistent data stor-

ages and their access credentials, are also specified alongside.

The second tier configuration, as shown in Table I, controls

the behaviors of the Kubeflow job, which mainly consists of a

reference to a Ksonnet prototype 4 for the Kubeflow job, and

a list of parameters corresponding to the prototype. The 2-

tier configuration structure decouples the benchmark workflow

from the ML workloads, thus allows reusing a workflow

without making frequent changes for a big batch of different

ML workload scenarios.

The Kubebench platform satisfies the requirements de-

scribed in Section II. It supports multiple ML frameworks

4Ksonnet is a framework for defining and deploying Kubernetes applica-
tions. A Ksonnet prototype is a boilerplate of the application with configurable
parameters.

75



Paremeter Name Example Explanation
name example-benchmark-job Name for easier identification
namespace example-benchmark Kubernetes namespace for isolation
image benchmark-img-cpu:v1 Container image for running ML workload
imageGpu benchmark-img-gpu:v1 GPU version of “image”
args ”−−batch size=100,−−num batches=32,−−model=resnet50” Command line arguments to “image”
numMasters 1 Number of masters in Kubeflow
numPs 2 Number of parameter servers in Kubeflow
numWorkers 4 Number of workers in Kubeflow
numGpus 4 Number of GPUs to be used by Kubeflow

TABLE I
EXAMPLE 2ND-TIER CONFIGURATION OF KUBEBENCH. SOME OF THESE PARAMETERS ARE KUBEFLOW SPECIFIC AND A DETAILED EXPLANATION OF

SUCH PARAMETERS IS OUTSIDE THE SCOPE OF THIS PAPER.

by leveraging the underlying Kubeflow’s ability to run ML

jobs of multiple ML frameworks. It is portable because it

simply requires a Kubernetes cluster to run the job; the cluster

can be on one’s own laptop, on on-premise clouds, on hybrid

clouds, or on production-grade public clouds. It has a flexible
and extensible API and since Kubernetes clusters can scale

to extremely large sizes, Kubebench is extremely scalable as

well. Finally of course, Kubebench is open-source.

The implementation of this design is currently under active

development and readers are welcome to look at and con-
tribute to the open-source Kubebench [13] project.

IV. RELATED WORK

There are projects similar to Kubeflow such as Intel’s

Machine Learning container Templates (MLT) [14] and IBM’s

Fabric for Deep Learning (FfDL) [15]. However, to the best

of our knowledge, there is no general purpose benchmarking

platforms for machine learning workloads for the container

ecosystem. There are benchmark results and sample bench-

mark code for individual ML frameworks [16], [17] but

these are usually meant for specific setups and are not easily

portable, especially to a containerized platform.

The MLPerf [12] project has reference implementations for

different ML frameworks but there is no standard machinery

to run these on Kubernetes clusters (though they do run the

benchmarks as containers). We expect a lot of synergy between

Kubebench and MLPerf since Kubebench can leverage the

MLPerf reference implementations and benchmark them on

Kubernetes clusters of any size (and of course, report the

benchmark results back to MLPerF).

V. CONCLUSION

This paper presents a benchmarking platform for machine

learning workloads, especially for enterprises embracing a

multi-cloud container world. Additionally, the paper also

presents the design and implementation of Kubebench, an

open-source benchmarking platform for running ML bench-

mark tests using Kubeflow, an open-source project for the

deployment and the lifecycle management of ML workflows

on Kubernetes. This allows enterprises to leverage quantitative

data to make educated decisions about models, the toolkits in

which the models are implemented, and the underlying multi-

cloud infrastructure for running these. Kubebench is under

active development in the open-source community within the

Kubeflow effort.
Note that we do not present new reference workloads and

we leverage standard workloads from MLPerf or Tensorflow.

This platform is a consistent way to describe, run, and collect

metrics for the ML lifecycle, given a reference workload. We

hope that this paper motivates further discussions and collab-

orations around benchmarking machine learning workloads.

REFERENCES

[1] Tensor Processing Unit. [Online]. Available:
https://cloud.google.com/tpu/docs/tpus

[2] Kubeflow: Machine Learning Toolkit for Kubernetes. [Online].
Available: https://github.com/kubeflow/kubeflow

[3] Kubernetes: Production-Grade Container Orchestration. [Online].
Available: https://kubernetes.io/

[4] Istio: An open platform to connect, manage, and secure microservices.
[Online]. Available: https://istio.io/

[5] Amazon Elastic Container Service. [Online]. Available:
https://aws.amazon.com/ecs/

[6] Google Kubernetes Engine. [Online]. Available:
https://cloud.google.com/kubernetes-engine/

[7] TensorFlow: An open source machine learning framework for everyone.
[Online]. Available: https://www.tensorflow.org/

[8] PyTorch: a deep learning framework for fast, flexible experimentation.
[Online]. Available: https://pytorch.org/

[9] Caffe: a fast open framework for deep learning. [Online]. Available:
http://caffe.berkeleyvision.org/

[10] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing, “Poseidon: An efficient
communication architecture for distributed deep learning on GPU
clusters,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17). Santa Clara, CA: USENIX Association, 2017, pp. 181–193.
[Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/zhang

[11] TPC Benchmarks. [Online]. Available:
http://www.tpc.org/information/benchmarks.asp

[12] MLPerf: A broad ML benchmark suite for measuring performance of
ML software frameworks, ML hardware accelerator, and ML cloud
platforms. [Online]. Available: https://mlperf.org/

[13] Kubebench: A Benchmarking Platform for Kubeflow. [Online].
Available: https://github.com/kubeflow/kubebench

[14] Machine Learning Container Templates. [Online]. Available:
https://github.com/IntelAI/mlt

[15] Fabric for Deep Learning. [Online]. Available:
https://github.com/IBM/FfDL

[16] TensorFlow Benchmarks. [Online]. Available:
https://www.tensorflow.org/performance/benchmarks

[17] PyTorch Benchmark Code. [Online]. Available:
https://github.com/pytorch/benchmark

76


