A Brief Introduction to the OpenFabrics Interfaces

A New Network API for Maximizing High Performance Application Efficiency

Paul Grun*, Sean HeftyT, Sayantan Surf, David Goodell}, Robert D. Russell, Howard Pritchard¥, Jeffrey M. Squyresi

*Cray, Inc.
tIntel Corp.
iCisco Systems, Inc.

grun@cray.com

{sean.hefty, sayantan.sur}@intel.com
{dgoodell, jsquyres}@cisco.com
SUNH InterOperability Laboratory

rdr@iol.unh.edu

YLos Alamos National Laboratory howardp @lanl.gov

Abstract—OpenFabrics Interfaces (OFI) is a new family of
application program interfaces that exposes communication
services to middleware and applications. Libfabric is the first
member of OFI and was designed under the auspices of
the OpenFabrics Alliance by a broad coalition of industry,
academic, and national labs partners over the past two years.
Building and expanding on the goals and objectives of the
verbs interface, libfabric is specifically designed to meet the
performance and scalability requirements of high performance
applications such as Message Passing Interface (MPI) libraries,
Symmetric Hierarchical Memory Access (SHMEM) libraries,
Partitioned Global Address Space (PGAS) programming mod-
els, Database Management Systems (DBMS), and enterprise
applications running in a tightly coupled network environ-
ment. A key aspect of libfabric is that it is designed to be
independent of the underlying network protocols as well as the
implementation of the networking devices. This paper provides
a brief discussion of the motivation for creating a new API,
describes the novel requirements gathering process which drove
its design, and summarizes the API’s high-level architecture
and design.

Keywords-fabric; interconnect; networking; interface

I. INTRODUCTION

OpenFabrics Interfaces, or OFI, is a framework focused
on exporting communication services to applications. OFI
is specifically designed to meet the performance and scala-
bility requirements of high-performance computing (HPC)
applications such as MPI, SHMEM, PGAS, DBMS, and
enterprise applications running in a tightly coupled network
environment. The key components of OFI are: application
interfaces, provider libraries, kernel services, daemons, and
test applications.

Libfabric is a library that defines and exports the user-
space API of OFI, and is typically the only software that
applications deal with directly. Libfabric is supported on
commonly available Linux based distributions. The libfabric
API is independent of the underlying networking protocols,
as well as the implementation of particular networking
devices over which it may be implemented.

OFI is based on the notion of application centric I/O,
meaning that the libfabric library is designed to align fabric
services with application needs, providing a tight semantic
fit between applications and the underlying fabric hardware.

This reduces overall software overhead and improves appli-
cation efficiency when transmitting or receiving data over a
fabric.

II. MOTIVATIONS

The motivations for developing OFI evolved from expe-
rience gained by developing OpenFabrics Software (OFS),
which is produced and distributed by the OpenFabrics
Alliance (OFA) [1]. Starting as an implementation of the
InfiniBand Trade Association (IBTA) Verbs specification [2],
OFS evolved over time to include support for both the
iWARP [3-5] and RoCE [6] specifications. As use of these
technologies grew, new ideas emerged about how to best
access the features available in the underlying hardware.
New applications appeared with the potential to utilize net-
works in previously unanticipated ways. In addition, demand
arose for greatly increased scalability and performance.
More recently new paradigms, such as Non-Volatile Memory
(NVM), have emerged.

All the above events combined to motivate a “Birds-of-
a-Feather” session at the SC13 Conference. The results of
that session provided the impetus for the OFA to form a new
project known as OpenFabrics Interfaces, and a new group
called the OpenFabrics Interface Working Group (OFIWG).
From the beginning, this project and the associated working
group sought to engage a wide spectrum of user com-
munities who were already using OFS, who were already
moving beyond OFS, or who had become interested in high-
performance interconnects. These communities were asked
to contribute their ideas about the existing OFS and, most
importantly, they were asked to describe their requirements
for interfacing with high-performance interconnects.

The response was overwhelming. OFIWG spent months
interacting with enthusiastic representatives from various
groups, including MPI, SHMEM, PGAS, DBMS, NVM and
others. The result was a comprehensive requirements doc-
ument containing 168 specific requirements. Some requests
were educational — complete, on-line documentation. Some
were practical — a suite of examples and tests. Some were
organizational — a well-defined revision and distribution
mechanism. Some were obvious but nevertheless challenging

— scalability to millions of communication peers. Some
were specific to a particular user community — provide tag-
matching that could be utilized by MPI. Some were an
expansion of existing OFS features — provide a full set of
atomic operations. Some were a request to improved existing
OFS features — redesign memory registration. Some were
aimed at the fundamental structure of the interface — divide
the world into applications and providers, and allow users
to select specific providers and features. Some were entirely
new — provide remote byte-level addressing.

After examining the major requirements, including a
requirement for independence from any given network tech-
nology and a requirement that a new API be more abstract
than other network APIs and more closely aligned with
application usage, the OFIWG concluded that a new API
based solely on application requirements was the appropriate
direction.

III. ARCHITECTURAL OVERVIEW

Figure 1 highlights the general architecture of the two
main OFI components, the libfabric library and an OFI
provider, shown situated between OFI enabled applications
and a hypothetical NIC that supports process direct I/O.

The libfabric library defines the interfaces used by appli-
cations, and provides some generic services. However, the
bulk of the OFI implementation resides in the providers.
Providers hook into libfabric and supply access to fabric
hardware and services. Providers are often associated with
a specific hardware device or NIC. Because of the structure
of libfabric, applications access the provider implementation

directly for most operations in order to ensure the lowest
possible software latencies.

As captured in Figure 1, libfabric can be grouped into
four main services.

A. Control Services

These are used by applications to discover information
about the types of communication services available in the
system. For example, discovery will indicate what fabrics
are reachable from the local node, and what sort of commu-
nication each fabric provides.

Discovery services allow an application to request specific
features, or capabilities, from the underlying provider, for
example, the desired communication model. In response, a
provider can indicate what additional capabilities an appli-
cation may use without negatively impacting performance or
scalability, as well as requirements on how an application
can best make use of the underlying fabric hardware. A
provider indicates the latter by setting mode bits which
encode restrictions on an application’s use of the interface.
Such restrictions are due to performance reasons based on
the internals of a particular provider’s implementation.

The result of the discovery process is that a provider uses
the application’s request to select a software path that is best
suited for both that application’s needs and the provider’s
restrictions.

B. Communication Services

These services are used to set up communication between
nodes. They include calls to establish connections (con-
nection management) as well as the functionality used to

MPI | [SHMEM . PGAS
Libfabric Enabled Applications
A
(N\
libfabric
Control Communication Completion Data Transfer
Discovery Connection Mgmt Event Queues Message Queues RMA
Address Vectors Counters Tag Matching Atomics
|\ J
()
OFI Provider v
Discovery Connection Mgmt Event Queues Message Queues RMA
Address Vectors Counters Tag Matching Atomics
\\§ T | J
\ 4 *
NIC TX Command Queues RX Command Queues

Figure. 1: Architecture of libfabric and an OFI provider layered between applications and a hypothetical NIC

address connectionless endpoints (address vectors). Com-
munication interfaces are designed to abstract fabric and
hardware specific details used to connect and configure
communication endpoints.

The connection interfaces are modeled after sockets to
support ease of use. However, address vectors are designed
around minimizing the amount of memory needed to store
addressing data for potentially millions of remote peers.

C. Completion Services

Libfabric exports asynchronous interfaces, and completion
services are used by a provider to report directly to an
application the results of previously initiated asynchronous
operations. Completions may be reported either by using
event queues or lower-impact counters. Entries in event
queues provide details about the completed operation in
several formats that an application can select in order to
minimize the data that must be set by the provider. Counters
simply report the number of completed operations.

D. Data Transfer Services

These services are sets of interfaces designed around dif-
ferent communication paradigms. Figure 1 shows four basic
data transfer interface sets. These data transfer services give
an application direct access to the provider’s implementation
of the corresponding service.

(i) Message queues expose the ability to send and receive
data in which message boundaries are maintained. They act
as FIFOs, with messages arriving from a remote sender
being matched with enqueued receive requests in the order
that they are received by the local provider.

(ii)Tag matching is similar to message queues in that it
maintains message boundaries, but differs in that received
messages are directed to enqueued receive requests based
on small steering tags that are carried in the message.

(iii) RMA stands for “Remote Memory Access”. RMA
transfers allow an application to write data from local
memory directly into a specified memory location in a target
process, or to read data into local memory directly from a
specified memory location in a target process.

(iv) Atomic operations are similar to RMA transfers in
that they allow direct access to a specified memory location
in a target process, but are different in that they allow for
manipulation of the value found in that memory, such as
incrementing or decrementing it.

Data transfer interfaces are designed to eliminate branches
that would occur within the provider implementation and
reduce the number of memory references, for example, by
enabling it to preformat command buffers to further reduce
the number of instructions executed in a transfer.

IV. OBJECT MODEL

The libfabric architecture is based on object-oriented
design concepts. At a high-level, individual fabric services

are associated with a set of interfaces. For example, RMA
services are accessible using a set of well-defined functions.
Interface sets are associated with objects exposed by libfab-
ric. The relationship between an object and an interface set is
roughly similar to that between an object-oriented class and
its member functions, although the actual implementation
differs for performance and scalability reasons.

An object is configured based on the results of the
discovery services. In order to enable optimized code paths
between the application and fabric hardware, providers dy-
namically associate objects with interface sets based on
the modes supported by the provider and the capabilities
requested by the application.

Figure 2 shows a high-level view of the parent-child
relationships between libfabric objects.

Passive ______ ol Fabric Event
Endpoints Queues
1
1 Wait Sets
|
Address - . Completion
Vector /’ ozl Queues
+
Memory - i Completion
Regions ! Counters
1
Active S
Endpoints ol Sete

Figure. 2: Object Model of libfabric

(i) Fabric: A fabric represents a collection of hardware
and software resources that access a single physical or
virtual network. All network ports on a system that can
communicate with each other through the fabric belong to
the same fabric domain. A fabric not only includes local and
remote NICs, but corresponding software, switches, routers,
and any necessary fabric or subnet management components.

(ii) Domain: A domain represents a logical connection
into a fabric. For example, a domain may map to a physical
or virtual NIC. A domain defines the boundary within which
fabric resources may be associated. Each domain belongs to
a single fabric.

The properties of a domain describe how associated re-
sources will be used. Domain attributes include information
about the application’s threading model, and how fabric
resources may be distributed among threads. It also de-
fines interactions that occur between endpoints, completion
queues and counters, and address vectors. The intent is for an
application to convey enough information that the provider
can select an optimized implementation tailored to its needs.

(iii) Passive Endpoint: Passive endpoints are used by
connection-oriented protocols to listen for incoming connec-
tion requests, conceptually equivalent to listening sockets.

(iv) Active Endpoint: An active endpoint (or, simply,
endpoint) represents a communication portal, and is con-
ceptually similar to a socket. All data transfer operations
are initiated on endpoints.

Endpoints are usually associated with a transmit context
and/or a receive context. These contexts are often imple-
mented using hardware queues that are mapped directly
into the process’s address space, which enables bypassing
the operating system kernel for data transfers. Data transfer
requests are converted by the underlying provider into com-
mands that are inserted into transmit and/or receive contexts.

A more advanced usage model of endpoints allows for
resource sharing. Because transmit and receive contexts
may be associated with limited hardware resources, libfabric
defines mechanisms for sharing contexts among multiple
endpoints. Shared contexts allow an application or resource
manager to prioritize where resources are allocated and how
shared hardware resources should be used.

In contrast with shared contexts, the final endpoint model
is known as a scalable endpoint. Scalable endpoints allow
a single endpoint to take advantage of multiple underly-
ing hardware resources by having multiple transmit and/or
receive contexts. Scalable contexts allow applications to
separate resources to avoid thread synchronization or data
ordering restrictions, without increasing the amount of mem-
ory needed for addressing.

(v) Event Queue: An event queue (EQ) is used to col-
lect and report the completion of asynchronous operations
and events. It handles control events that are not directly
associated with data transfer operations, such as connection
requests and asynchronous errors.

(vi) Completion Queue: A completion queue (CQ) is
a high-performance queue used to report the completion
of data transfer operations. Transmit and receive contexts
are associated with completion queues. The format of
events read from a completion queue is determined by
an application. This enables compact data structures with
minimal writes to memory. Additionally, the CQ interfaces
are optimized around reporting operations that complete
successfully, with error completions handled “out of band”.
This allows error events to report additional data without
incurring additional overhead that would be unnecessary in
the common case of a successful transfer.

(vii) Completion Counter: A completion counter is a
lightweight alternative to a completion queue, in that its use
simply increments a counter rather than placing an entry
into a queue. Similar to CQs, an endpoint is associated
with one or more counters. However, counters provide finer
granularity in the types of completions that they can track.

(viii) Wait Set: A wait set provides a single underlying
wait object to be signaled whenever a specified condition
occurs on an event queue, completion queue, or counter
belonging to the set. Wait sets enable optimized methods for
suspending and signaling threads. Applications can request
that a specific type of wait object be used, such as a file
descriptor, or allow the provider to select an optimal object.
The latter grants flexibility in current or future underlying
implementations.

(ix) Poll Set: Although libfabric is architected to support
providers that offload data transfers directly into hardware,
it supports providers that use the host CPU to progress
operations. Libfabric defines a manual progress model where
the application agrees to use its threads for this purpose,
avoiding the need for underlying software libraries to allo-
cate additional threads. A poll set enables applications to
group together completion queues or counters, allowing one
poll call to make progress on multiple completions.

(x) Memory Region: A memory region describes an appli-
cation’s local memory buffers. In order for a fabric provider
to access application memory during certain types of data
transfer operations, such as RMA and atomic operations,
the application must first grant the appropriate permissions
to the fabric provider by constructing a memory region.

Libfabric defines multiple modes for creating memory
regions. It supports a method that aligns well with existing
InfiniBand™ and iWARP™ hardware, but, in order to scale
to millions of peers, also allows for addressing using offsets
and user-specified memory keys.

(xi) Address Vector: An address vector is used by con-
nectionless endpoints to map higher-level addresses which
may be more natural for an application to use, such as
IP addresses, into fabric-specific addresses. This allows
providers to reduce the amount of memory required to
maintain large address look-up tables, and to eliminate
expensive address resolution and look-up methods during
data transfer operations.

Libfabric borrowed and expanded on concepts found in
other APIs, then brought them together in an extensible
framework. Additional objects can easily be introduced, or
new interfaces to an existing object can be added. However,
object definitions and interfaces are designed specifically to
promote software scaling and low-latency, where needed.
Effort went into ensuring that objects provided the correct
level of abstraction in order to avoid inefficiencies in either
the application or the provider.

V. CURRENT STATE

An initial (1.0) release of libfabric is now available [7, 8]
with complete user-level documentation (“man pages”) [9].
New releases are planned quarterly. This release provides
enough support for HPC applications to adapt to using its
interfaces. Areas where improvements can be made should
be reported back to the OFI working group, either by posting
concerns to the ofiwg mailing list, bringing it to the work
group’s attention during one of the weekly conference calls,
or by opening an issue in the libfabric GitHub™ database.
Although the API defined by the 1.0 release is intended
to enable optimized code paths, provider optimizations that
take advantage of those features will be phased in over the
next several releases.

The 1.0 release supports several providers. A sockets
provider is included for developmental purposes, and runs

on both Linux and Mac OS X systems. It implements the full
set of features exposed by libfabric. A general verbs provider
allows libfabric to run over hardware that supports the
libibverbs interface. A “usnic” provider supports the usNIC
(user-space NIC) feature of Cisco’s Virtualized Interface
Card (VIC) hardware. Finally, the PSM provider supports
Intel’s Performance Scaled Messaging (PSM) interface.

In addition to the current providers, support for additional
hardware is actively under development. A Cray Aries
network provider will be available in a post 1.0 release. An
MXM provider will enhance libfabric support for Mellanox
hardware. And future support will also include Intel’s new
Omni Path Architecture. Optimizations are also under devel-
opment for select hardware and vendors. The details of this
work will become available as it moves closer to completion,
and may be tracked through the GitHub repositories.

VI. ANALYSIS OF THE INTERFACE

The libfabric interfaces aim to achieve multiple objectives.
Among them are hardware implementation independence,
improved software scalability, and decreased software over-
head. In order to analyze whether the proposed interfaces
meet these objectives, we provide a comparison of using
libfabric alongside a widely used interface for HPC middle-
ware, libibverbs. In order to ensure as fair a comparison
as reasonable, we restrict the comparison to both using
InfiniBand based hardware, the architecture that libibverbs
is based upon. Additionally, we focus on the impact that the
API itself has on application performance, not differences
that may arise as a result of the underlying implementation.

A. Scalability

The address vector interfaces of libfabric are specifically
designed to improve software scalability. For the purposes of
this comparison, we analyze the memory footprint needed to
access peer processes when using an unconnected endpoint.
A summary for a 64-bit platform is shown in Figure 3.

libibverbs with InfiniBand libfabric with InfiniBand

Type Data Size Type Data Size
struct * ibv_ah 8 uint64 fi_addr_t 8
uint32 QPN 4
uint32 QKey 410]
ibv_ah

struct * ibv_context 8

struct * ibv_pd 8

uint32 handle 4

[uint32] [padding] 0[4]

Total 36 8

Figure. 3: libibverbs compared to libfabric when accessing
an unconnected endpoint

An application that uses the libibverbs interface requires
a total of 36 bytes of related addressing metadata for every

remote peer. Applications submitting a transfer request must
provide 3 input parameters: a pointer to an address handle
structure (ibv_ah), a destination queue pair number (QPN),
and a queue key (gkey). For this analysis, it is assumed that
an application uses a single gkey, which may be ignored.
An address handle is required to send to each peer process,
and is allocated by the libibverbs library. The minimal size
of the address handle is given in Figure 3, and consists of
two pointers, plus a 32-bit kernel identifier or handle. To
account for data alignment, we include 4 additional bytes of
padding which we will make use of below.

With libfabric, data transfers require that applications
provide an input value of data type £i_addr_t. This is
defined as a uint64. Address vectors in libfabric can be one
of two different types: FI_AV_TABLE or FI_AV_MAP. In
the case of FI_AV_TABLE, applications reference peers
using a simple index. For applications, such as MPI or
SHMEM, the index can be mapped either to rank or PE
number, eliminating any application level storage needed
for addressing. With FI_AV_MAP, however, applications
must store an opaque £i_addr_t address, which requires
8 bytes of storage per peer.

It should be noted that the memory footprint required by
an application to use an interface is meaningless if the meta-
data is simply moved underneath the interface. Although the
amount of metadata ultimately required is fabric specific, for
InfiniBand hardware, the metadata required to send a transfer
to an unconnected queue pair is shown in Figure 4.

IB Data: DLID SL QPN

Size: 2 1 3

Figure. 4: InfiniBand metadata for an unconnected transfer

An InfiniBand path within a subnet is defined as a tuple:
<SLID, DLID, SL>. Packets carry this metadata when
transferring between peer endpoints. As mentioned, uncon-
nected transfers also require a gkey (which may be constant
for a given job) and a gpn (which is chosen randomly for
each peer queue pair). With the SLID determined by the
local endpoint, to reach a given peer requires storing the
tuple: <DLID, SL, QPN>. As shown in Figure 4, this
requires 6 bytes of metadata. (Note, that the SL is only 4-
bits, but expanded to use a full byte.) The QPN is already
accounted for in the libibverbs API Figure 3. However, a
libibverbs provider must maintain the DLID and SL for
each destination. We propose that a provider may store this
metadata in the address handle (ibv_ah) in the space where
a compiler would normally provide structure padding. This
optimally keeps the memory footprint to 36 bytes per peer.

Using similar metadata, Figure 4 shows that the libfabric
address vector of type FI_AV_TABLE reduces the memory
footprint to only 6 bytes, which requires a table lookup on
any transfer call, a cost similar to dereferencing a pointer to

struct ibv_ah. If FI_AV_MAP is used, the memory footprint
remains at 8 bytes per peer, because the fi_addr_t
encodes the <DLID, SL, QPN> directly, with the extra
bits unused.

With both address vector types, the memory footprint
is reduced approximately 80%. Application selection of
address vector type then becomes a matter of further opti-
mizing for memory footprint or execution time on transfers.

B. Performance Optimizations

To analyze performance optimizations, we examine the
transmit code path that results from the interface definition
itself. For this analysis, we measure the count and number of
bytes of memory writes that an application must invoke in
order to use the interface. Additionally, we determine where
the API results in the underlying provider needing to take
conditional branches, including structured loops, in order to
ensure correct operation. Figure 5 summarizes this analysis.

The libibverbs interface uses a single interface,
ibv_post_send, into the provider to transmit data,
with the following prototype:
int ibv_post_send(struct ibv_gp =*gp,

struct ibv_send_wr xwr,
struct ibv_send_wr *xbad_wr)

In order to send a transfer to an unconnected peer, the
fields shown in Figure 5 must be filled out. Additionally,
wr, a reference to the send work request structure, plus the
bad_wr parameter, must be written to the stack. The net
result is that 14 memory writes for 84 total bytes of metadata
must be written by the application as part of the transmit
operation. (The gp parameter and its corresponding libfabric
ep parameter are ignored for this study.)

libibverbs with InfiniBand libfabric with InfiniBand
Structure Field Write Size Branch? Type Parameter | Write Size Branch?
sge void * buf 8

addr 8 size_t len 8

length 4 void * desc 8

lkey 4 fi_addr_t dest_addr 8
send_wr 8 void * context 8

wr_id 8

next 8 Yes

sg_list 8

num_sge 4 Yes

opcode 4 Yes

flags 4 Yes

ah 8

gpn 4

qkey 4

Totals 76+8=84 4+1=5 40 0

Figure. 5: Transmit code path comparison

Furthermore, if we examine the work request fields, we
can identify those which will result in branches in the
underlying provider. Send work requests may be chained
together, and the number of SGEs is variable. Both of these
fields result in for-loops in the provider code. The type of

operation is specified through the opcode field. Since the
opcode and flags fields determine which of the other fields of
the work request are valid, providers must check these fields
and act accordingly. Lastly, libibverbs defines a single entry
point into the provider. Transfer operations on all queue
pairs, regardless of their type, branch off from the single
ibv_post_send entry point. In total, a transmit call will
take at least 5 branches before the request can be written
to hardware. (A code review of one provider showed that at
least 19 branches would be taken, though we suspect that
number could be reduced through code restructuring.)

Libfabric, on the other hand, associates entry points per
endpoint, and provides multiple calls, similar to the socket
transfer calls send, write, writev, and sendmsg.
Data transfer flags are specified as part of endpoint initializa-
tion, which enables them to be removed from the transmit
path. For a transmit call that sends a single message, the
libfabric API requires that applications write 5 values onto
the stack, for 40 total bytes of metadata. The API itself does
not result in provider branches.

VII. SUMMARY

The libfabric interfaces were co-designed between appli-
cation developers and hardware providers. The result is an
API not just tailored to meet application needs, but also
designed to allow for efficient implementation. Libfabric was
designed to map well to MPI, SHMEM, PGAS, DBMS, and
socket applications. In addition, strong consideration was
given to how those interfaces could be implemented over a
variety of hardware and fabrics.

The initial focus of the OFIWG was quickly enabling
libfabric over a variety of hardware, so that application de-
velopers could begin porting their applications and exploring
its use. The next phase of libfabric development is focused
on the creation of native, optimized providers.

REFERENCES

[1] OpenFabrics Alliance, “http://www.openfabrics.org.”

[2] Infiniband Trade Association, “Infiniband Architecture Speci-
fication Volume 1, Release 1.2.1,” Nov. 2007.

[3] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A
Remote Direct Memory Access Protocol Specification,” RFC
5040, Oct. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc5040.txt

[4] H. Shah, J. Pinkerton, R. Recio, and P. Culley, “Direct Data
Placement over Reliable Transports,” RFC 5041, Oct. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc5041.txt

[5] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier, “Marker
PDU Aligned Framing for TCP Specification,” RFC 5044, Oct.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc5044.txt

[6] Infiniband Trade Association, “Supplement to Infiniband Ar-
chitecture Specification Volume 1, Release 1.2.1: Annex A16:
RDMA over Converged Ethernet (RoCE),” Apr. 2010.

[7] OpenFabrics Interfaces, “https://github.com/ofiwg/libfabric.”

[8] Libfabric Programmer’s Manual,
“http://ofiwg.github.io/libfabric.”
[9] Libfabric man pages v1.0.0 release,

“http://ofiwg.github.io/libfabric/v1.0.0/man.”

